
THE GENERATING FIELDS OF TWO TWISTED
KLOOSTERMAN SUMS

SHENXING ZHANG

Abstract. In this paper, we study the generating fields of the twisted Kloost-
erman sums Kl(q, a, χ) and the partial Gauss sums g(q, a, χ). We require that
the characteristic p is large with respect to the order d of the character χ and
the trace of the coefficient a is nonzero. When p ≡ ±1 mod d, we can charac-
terize the generating fields of these character sums. For general p, when a lies
in the prime field, we propose a combinatorial condition on (p, d) to ensure
one can determine the generating fields.

1. Introduction

1.1. Background. Let p be a prime, q = pk a power of p. Let f ∈ Fq[x
±1
1 , . . . , x±1

n ]
be a Laurent polynomial. Let χ1, . . . , χn : F×

q → µq−1 be multiplicative characters.
The twisted exponential sum of f with respect to χ1, . . . , χn is defined as

S∗
q (f, χ1, . . . , χn) :=

∑
xi∈F×

q

χ1(x1) . . . χn(xn)ζ
Tr(f(x1,...,xn) ∈ Z[µdp],

where d is the least common multiplier of orders of χ1, . . . , χn, ζ is a fixed primitive
p-th root of unity and Tr = TrFq/Fp

. If all χi are trivial and f is a polynomial, we
denote by

Sq(f) :=
∑
xi∈Fq

ζTr(f(x1,...,xn) ∈ Z[µp]

the exponential sum of f . If ζ is replaced by another primitive p-th root of unity,
the twisted exponential sum is replaced by a Galois conjugate and its degree does
not change. There are various results about estimation on the exponential sums,
their absolute values and p-adic valuations we will not list here. What we will
discuss is their generating fields for some special f, χi.

The generating fields of exponential sums are relate to the distinctness of expo-
nential sums and the generators of cyclotomic fields. When all χi are trivial, to
give the generating field of Sq(f) or S∗

q (f) is equivalent to give its degree as an
algebraic number. We list some known results here.

(1) deg f = 1: Sq(f) = 0.
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(2) deg f = 2, p ≥ 3: Sp(x
2) =

√
(−1)(p−1)/2p is the Gauss sum of the

non-trivial quadratic character modulo p. Hasse-Davenport proved that
Sq(x

2) = (−1)k−1Sp(x
2)k. Hence Sq(x

2 + a) = (−1)k+1Sp(x
2)kζTr(a) and

degSq(x
2 + a) =


p− 1, if Tr(a) 6= 0;

2, if Tr(a) = 0 and 2 - k;
1, if Tr(a) = 0 and 2 | k.

(3) f = axd, p ≥ 3: We may assume that d | (q − 1). Then degSq(f) divides
(p − 1)/(p − 1, q−1

d ). If d | (p − 1) or d | (q − 1)/(p − 1), then degSq(f) =

(p− 1)/(p− 1, q−1
d ). See [Wan19, Example 3.10].

(4) f = axdd2 + xdd1 with coprime d1, d2: If p ≡ 1 mod d, p is large with
respect to deg f and Tr(a−d1) 6= 0, then degSq(f) = p−1

(d2−d1,p−1) . See
[Zha20, Theorem 1.1].

(5) For f ∈ Fq[x], (p− 1)/ degSp(f) is a factor of

(#
{
(x, y) ∈ F2

q | yp − y = f(x)
}
− 1, p− 1).

See [Wan19, Theorem 3.16].
(6) The sequence

{
Sqk(f)

}
k

is periodic for k ≥ N for some constant N , see
[WaY20, Theorem 1]. The author gave a bound on the period in [Zha20,
Corollary 2.4]. Combining this result and the bound on the degree of the
L-function of f in [Bom78, Theorem 1], the author showed that: under
certain coprime condition, the degree of Spk(axd+1 + x) = (p − 1)/d for
sufficiently large k if p ≡ 1 mod d and p is large with respect to d. See
[Zha20, Corollary 1.2(2)].

The exponential sum of

f = ax1 · · ·xn + x−1
1 + · · ·+ x−1

n , a ∈ F×
q

is called the Kloosterman sum Kln(q, a). When Tr(a) 6= 0, the degree of Kl(q, a) is
(p− 1)/(n+ 1, p− 1), see [Wan95, Theorem 1.1]. When Tr(a) = 0, the degree of f
can be obtained by the work in [Fis92, Corollary 4.24] and [Wan95, Theorem 5.1]
if p is large or p does not divide a certain integer, with respect to n and k. But no
simple formula is known in general, see also [KRV11, Theorem 2].

1.2. Main results. We see that all of these results are about untwisted exponential
sums. In this article, we will consider the generating field of the general Kloosterman
sum

Kln(χ1, . . . , χn; d1, . . . , dn)(q, a) =
∑

x
d1
1 ...x

dn
n =a

x1,...,xn∈F×q

ζTr(
∑

i xi)
n∏

i=1

χi(xi) ∈ Q(µdp)

in two cases, where χ1, . . . , χn are multiplicative characters on F×
q and a ∈ F×

q . See
[Kat88, page 48].

When Tr(a) 6= 0, we study the generating field of the twisted Kloosterman sum

Kl(q, a, χ) := Kl2(χ,1; 1, 1)(q, a) =
∑
x∈F×

q

χ(x)ζTr(x+a/x),
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and the generating field of the partial Gauss sum

g(q, a, χ) := Kl1(χ; q + 1)(q2, a) =
∑

xq+1=a

χ(x)ζTr(x+a/x).

These character sums are motivated from the exponential sums of cubic polynomi-
als. When χ is cubic, the exponential sum

Sq(x
3 − 3ax) :=

∑
x∈Fq

ζTr(x
3−3ax) =

{
Kl(q, a3, χ), if q ≡ 1 mod 3;

g(q, a3, χ), if q ≡ −1 mod 3.

See Proposition 2.2.
Fix isomorphisms

σ− : (Z/pZ)× −→ Gal(Q(µp)/Q)

where σt(ζp) = ζtp for any ζp ∈ µp,

τ− : (Z/dZ)× −→ Gal(Q(µd)/Q)

where τw(ζd) = ζwd for any ζd ∈ µd. Both σt and τw can be viewed as elements in
Gal(Q(µdp)/Q) since p - d.

Theorem 1.1. Let d be the order of χ.
(1) When d = 2,

• Kl(q, a, χ) = 0 if χ(a) = −1;
• Kl(q, a, χ) generates Q(µp)

+ if χ(a) = 1, χ(−1) = 1 and Tr(
√
a) 6= 0;

• Kl(q, a, χ) generates Q(µp) if χ(a) = 1, χ(−1) = −1 and Tr(
√
a) 6= 0;

(2) When d ≥ 3 and p > 5d− 2, Kl(q, a, χ) generates Q(µdp)
H , where

H =



〈τ−1, σ−1〉, if χ(−1) = 1 and χ(a) = 1;

〈σ−1〉, if χ(−1) = 1 and χ(a) = −1;

〈τ−1〉, if χ(−1) = −1 and χ(a) = 1;

〈τ−1σ−1〉, if χ(−1) = −1 and χ(a) = −1;

{1} , if χ(−1) = −1 and χ(a) 6= ±1,

if p ≡ ±1 mod d and Tr(a) 6= 0.

See Propositions 3.3 and 3.10.

Theorem 1.2. Let d be the order of χ. Assume that Tr(a) 6= 0.
(1) If d | (q − 1) and p > 2, then g(q, a, χ) generates Q(µdp)

H , where

H = {τwσ±1 | w ≡ 1 mod d1}

and d1 | d is the order of a(q−1)/d.
(2) If d | (p+ 1) and p > 7d− 2, then g(q, a, χ) generates Q(µdp)

H , where

H =

{
〈τ−1, σ−1〉, if a /∈ F×2

q or 4 - d;
〈τd/2+1, τ−1, σ−1〉, if a ∈ F×2

q and 4 | d.

See Propositions 4.3 and 4.8.
For general d, if (p, d) satisfies a combinatorial condition, we characterize the

generating fields of these character sums when a ∈ Fp. Let n be the order of
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p mod d. For any r ∈ Z or Z/dZ, write aj ≡ rp−j mod d with 0 ≤ aj ≤ d − 1.
Define

Vr :=
1

n

n−1∑
j=0

min

{
δj +

aj+1p− aj
d

, p− δj −
aj+1p− aj

d

}
where

δj =

{
0, if aj ≤ d/2;

1, if aj > d/2.

Denote by
Tp,d =

{
r ∈ (Z/dZ)× | Vrs = Vs, ∀s ∈ (Z/dZ)×

}
.

This is a subgroup of (Z/dZ)× containing −1, p.

Theorem 1.3. Let d be the order of χ. Assume that a ∈ F×
p and p - k.

(1) If d ≥ 3, p > 5d− 2 and Tp,d = 〈−1, p〉, then Kl(q, a, χ) generates Q(µdp)
H ,

where

H =



〈τp, τ−1, σ−1〉, if χ(−1) = 1 and χ(a) = 1;

〈τp, σ−1〉, if χ(−1) = 1 and χ(a) = −1;

〈τp, τ−1〉, if χ(−1) = −1 and χ(a) = 1;

〈τp, τ−1σ−1〉, if χ(−1) = −1 and χ(a) = −1;

〈τp〉, if χ(−1) = −1 and χ(a) 6= ±1.

In particular, this holds for d ≤ 31 with p 6≡ ±(d/2 + 1) mod d if 4 | d.
(2) If d | (q + 1), p > 7d − 2 and Tp,d/(2,d) = 〈p〉, then g(q, a, χ) generates

Q(µdp)
H , where

H =

{
〈τp, σ−1〉, if a /∈ F×2

p or 4 - d;
〈τd/2+1, τp, σ−1〉, if a ∈ F×2

p and 4 | d.

In particular, this holds if d/(2, d) ≤ 31.

See Theorems 3.11 and 4.9.
It’s an interesting phenomenon that these two different Kloosterman sums de-

pend on similar conbinatorial conditions. It seems that there should be a direct
relation between these two Kloosterman sums.

We will express the Kloosterman sums as a Fourier expansion and use Stick-
elberger’s congruence theorem to determine the first several terms of the P-adic
expansions for a fixed prime P in Q(µ(q−1)p). The main estimation is in Lemma 3.4.
Then the generating fields are obtained by these results.

2. Preliminaries

2.1. The Stickelberger’s congruence theorem. We will use this theorem to
estimate the valuations of Gauss sums. The prime p splits into f = φ(q − 1)/k
primes as

pZ[µq−1] = p1 · · · pf
in Q(µq−1) and pi’s are totally ramified as

piZ[µ(q−1)p] = Pp−1
i

in Q(µ(q−1)p). Let p be a fixed prime above p in Q(µq−1) and P the unique prime
above p in Q(µ(q−1)p). Let v be the normalized P-adic valuation. Then v(p) = p−1
and v(π) = 1 where π = ζ − 1.
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Q(µ(q−1)p)⊃ P1, . . . ,Pf

p1, . . . , pf ⊂Q(µq−1)

qqqqqqqqqq

Q(µp)⊃ (π) = (ζ − 1)

pZ ⊂Q

qqqqqqqqqqqq

Let κ be the residue field of p and ω the Teichmüller lifting of the quotient map
Z[µq−1]

× � κ× associated to p. We can view ω as a character on F×
q if we fix an

isomorphism Fq
∼= κ. Different choice of the isomorphism may cause a composite

by a power of the Frobenius map. Take ω(0) = 0 for convention. Then ω is
multiplicative and

ω(a) + ω(b)− ω(a+ b) ∈ p.

In particular, its P-adic valuation is at least p− 1. Denote by

g(m) :=
∑
t∈F×

q

ω(t)−mζTr(t)

the Gauss sum of ω−m. Clearly, g(0) = −1 and g(pm) = g(m). Recall the Stickel-
berger’s congruence theorem, see [Sti90], [Was82, Chap. 6].

Theorem 2.1. For 0 ≤ m < q − 1,

g(m) ≡ −πm0+···+mk−1

m0! · · ·mk−1!
mod Pm0+···+mk−1+1,

where
m = m0 +m1p+ · · ·+mk−1p

k−1, 0 ≤ mi ≤ p− 1.

In particular, v(g(m)) ≡ m mod (p− 1) has same parity with m.

2.2. Relation to the exponential sums of cubic polynomials. In this sub-
section, we will show the relations between the cubic exponential sums and the
twisted Kloosterman sums or the partial Gauss sums. This fact is well known to
experts. Let’s show it briefly.

Proposition 2.2. Assume that p > 3 and a ∈ F×
q .

(1) If q ≡ 1 mod 3, then Sq(x
3 − 3ax) = Kl(q, a3, χ) where χ is any non-trivial

3-th character of F×
q .

(2) If q ≡ −1 mod 3, then Sq(x
3 − 3ax) = gχ(q, a

3) where χ is any non-trivial
3-th character of F×

q2 .
From this, Sq(x

3−3ax) generates Q(µp)
+ = Q(ζ+ζ−1) if Tr(a3) 6= 0 and p > 19.

Proof. Denote by Nc the number of the equation
f(x) = x3 − 3ax = c ∈ Fq

with multiplicities. The discriminant of f − c is
∆ = −27ς2 = −27(c2 − 4a3) ∈ Fq.
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Then Nc = 1 if and only if
√
∆ /∈ Fq. Indeed, there are three cases:

• Nc = 1, f − c decomposes into a linear factor and a degree 2 irreducible
polynomial. Thus the splitting field of f − c is Fq2 and

√
∆ /∈ Fq.

• Nc = 3, clearly
√
∆ ∈ Fq.

• Nc = 0, f − c is irreducible and
√
∆ ∈ Fq3 ∩ Fq2 = Fq.

Fix a nontrivial 3-th root of unity λ ∈ Fq2 . Then
√
∆ = ±3(2λ+ 1)ς.

(1) In this case, λ ∈ Fq. Assume that ς =
√
c2 − 4a3 ∈ Fq. That’s equivalently

to say, Nc = 0 or 3. By Cardano’s formula, the solutions of f(x) = c in Fq are

u+ au−1, λu+ λ2au−1, λ2u+ λau−1,

where u3 = (c+ς)/2. If Nc = 3, then u+au−1 ∈ Fq, u lies in Fq2∩Fq3 = Fq and vice
versa. Hence Nc = 3 if and only if v := (c+ ς)/2 ∈ F×3

q . We have a3/v = (c− ς)/2

and c = v + a3/v.
If Nc = 3 and c = ±2a3/2, we have ς = 0 and there is a root with multiplicity 2.

Denote by
Bi =

∑
Nc=i,c ̸=±2a3/2

ζTr(c).

Then
B3 =

1

2

∑
v∈F×3

q ,v ̸=±a3/2

ζTr(v+a3/v), B0 =
1

2

∑
v/∈F×3

q

ζTr(v+a3/v).

and
B0 +B1 +B3 + ζTr(2a

3/2) + ζTr(−2a3/2) =
∑
c∈Fq

ζTr(c) = 0.

If a /∈ F×2
q , the terms ζTr(±2a3/2) disappear. Now

Sq(f) = B1 + 3B3 + 2ζTr(2a
3/2) + 2ζTr(−2a3/2)

= 2B3 −B0 + ζTr(2a
3/2) + ζTr(−2a3/2)

=
∑

v∈F×3
q ,v ̸=±a3/2

ζTr(v+a3/v) − 1

2

∑
v/∈F×3

q

ζTr(v+a3/v) + ζTr(2a
3/2) + ζTr(−2a3/2)

=
∑
v∈F×

q

χ(v) + χ(v)

2
· ζTr(v+a3/v)

=
Kl(q, a3, χ) + Kl(q, a3, χ)

2
= Kl(q, a3, χ)

by Lemma 3.1(1).
(2) In this case, p ≡ −1 mod 3, k = 2ℓ+1 is odd and λ ∈ Fq2 −Fq. Thus −27 is

not a square in Fq. Assume that (2λ+1)ς ∈ Fq. That’s equivalently to say, Nc = 0
or 3. Let δ : x 7→ xq be the nontrivial element in Gal(Fq2/Fq). The solutions of
f(x) = c in Fq are

u+ uδ, λu+ λ2uδ, λ2u+ λuδ,

where u3 = (c + ς)/2. If u ∈ F×
q2 , then Nc = 3 and vice versa. Hence Nc = 3 if

and only if v := (c + ς)/2 ∈ F×3
q2 . We have vδ = (c − ς)/2 = a3/v and c = v + vδ.
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Similar to (1), we have

Sq(f) =
∑

vvδ=a3

χ(v) + χ(v)

2
· ζTr(v+vδ) =

gχ(q, a
3) + gχ(q, a

3)

2
= gχ(q, a

3)

by Lemma 4.1(1).
Finally, the claim on the generating field of Sq(x

3 − 3ax) follows from Proposi-
tions 3.10 and 4.8. �

Remark 2.3. The condition on p can be weaken to p > 11, see [Zha20, Corollary 1.2].

3. The twisted Kloosterman sums

In this section, we will study the generating field of the twisted Kloosterman
sum

Kl(q, a, χ) :=
∑
x∈F×

q

χ(x)ζTr(x+a/x) ∈ Q(µdp), a ∈ F×
q ,

where d | (q − 1) is the order of χ.

Lemma 3.1. We have
(1) Kl(q, a, χ) = χ(a)Kl(q, a, χ);
(2) Kl(q, a, χp) = Kl(q, ap, χ).

Proof. We substitute x by a/x or xp respectively, then the result follows. �

There is an integer w prime to d such that χ = ω−(q−1)w/d. Then

Kl(q, a, χ) = τwKl(q, a, ω−(q−1)/d).

Since we are interested in the generating field of Kl(q, a, χ), we may assume that
χ = ω−(q−1)/d from now on.

Lemma 3.2. We have a Fourier expansion

(q − 1)Kl(q, a, χr) =

q−2∑
m=0

ωm(a)g(m)g
(
m+ q−1

d r
)
.

Proof. We have
q−2∑
m=0

ω−m(a−1xy) =

{
0, if xy 6= a;

q − 1, if xy = a.

Thus

(q − 1)Kl(q, a, χr) = (q − 1)
∑
xy=a

χr(x)ζTr(x+y)

=
∑

x,y∈F×
q

ω−(q−1)r/d(x)

q−2∑
m=0

ω−m(a−1xy)ζTr(x+y)

=

q−2∑
m=0

ωm(a)g(m)g
(
m+ q−1

d r
)
. �
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3.1. The quadratic twist.

Proposition 3.3. Assume that d = 2.
(1) Kl(q, a, χ) = 0 if χ(a) = −1.
(2) If χ(a) = 1 and Tr(

√
a) 6= 0, then Kl(q, a, χ) generates Q(µp)

+ if χ(−1) = 1;
generates Q(µp) if χ(−1) = −1.

Proof. (1) Note that χ(a) = −1 and χ = χ, the result follows from Lemma 3.1(1).
(2) Write a = b2. By Lemma 3.2, we have

(q − 1)Kl(q, a, χ) = 2

(q−3)/2∑
m=0

ωm(a)g(m)g
(
m+ q−1

2

)
.

Write

m =

k−1∑
j=0

mjp
j , m+

q − 1

2
=

k−1∑
j=0

njp
j

with 0 ≤ mj , nj ≤ p− 1. Then

nj = mj +
p− 1

2
+ ϵj−1 − pϵj ,

where ϵj ∈ {0, 1} and ϵ−1 = ϵk−1 = 0. Denote by m′
j = min {mj , nj} and ϵ′j =

|ϵj − ϵj+1|. Then

mj + nj =
p− 1

2
+ 2m′

j + ϵ′j−1

and

v
(
g(m)g

(
m+ q−1

2

))
=

k−1∑
j=0

(mj + nj)

=
(p− 1)k

2
+

k−1∑
j=0

(
2m′

j + ϵ′j−1

)
≥ V :=

(p− 1)k

2
.

The equality holds if and only all m′
j = ϵ′j = 0, that’s to say, m = 0.

There are two cases such that the valuation is secondly minimal.
i) All m′

j = ϵ′j = 0 except m′
i = 1 for a unique i with 0 ≤ i ≤ k − 1. That’s

to say, m = pi, m + (q − 1)/2 ≡ pi(q + 1)/2 mod (q − 1). The summation
of Fourier terms over these m is

2

k−1∑
i=0

ωpi

(a)g(pi)g
(
pi + q−1

2

)
= 2ω(Tr(a))g(1)g

(
q+1
2

)
≡ 2ω(Tr(a))πV+2(

p−1
2

)
!k−1

(
p+1
2

)
!
≡ Cω(Tr(a))πV+2 mod PV+3,

where C = 4
(
p−1
2

)
!−k.

ii) All m′
j = ϵ′j = 0 except ϵ′i = ϵ′i′ = 1 for a unique pair i, i′ with 0 ≤

i < i′ ≤ k − 1. That’s to say, ϵi+1 = · · · = ϵi′ = 1 and zero otherwise,
m = (pi+pi

′
)/2,m+(q−1)/2 ≡ (pi

′
+pi+k)/2 mod (q−1). The summation
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of Fourier terms over these m is

2
∑

0≤i<i′≤k−1

ω(pi+pi′ )/2(a)g

(
pi + pi

′

2

)
g

(
pi + pi

′

2
+

q − 1

2

)

≡
∑

0≤i<i′≤k−1

2ωpi+pi′

(b)πV+2(
p−1
2

)
!k−2

(
p+1
2

)
!2

≡ Cω
(
Tr(b)2 − Tr(b2)

)
πV+2 mod PV+3.

Now we have
(q − 1)Kl(q, a, χ) ≡ −2g( q−1

2 ) + Cω(Tr(b))2πV+2 mod PV+3. (3.1)

If σt fixes Kl(q, a, χ), we have σtKl(q, a, χ) = χ(t)−1Kl(q, at2, χ) = Kl(q, a, χ) and
then χ(t) = 1,

ω(Tr(bt))2 ≡ ω(Tr(b))2 mod P.

Note that Tr(b) 6= 0. If χ(−1) = −1, we have t = ±1 and Kl(q, a, χ) generates
Q(µp)

+. If χ(−1) = 1, we have t = 1 and Kl(q, a, χ) generates Q(µp). �

3.2. The d-th twist with d ≥ 3. We need the following lemma to obtain the
P-adic expansion of Kl(q, a, χ).

Lemma 3.4. Let

s =

k−1∑
j=0

sjp
j , 0 ≤ sj ≤ p− 1,

be an integer less than q − 1, satisfying sj 6= (p− 1)/2 for all j. Denote by

M :=
∑
δj=1

(p− δj−1 − sj)p
j , M + s ≡

∑
δj=0

(δj−1 + sj)p
j mod (q − 1)

and

V := v
(
g(M)g(M + s)

)
=

k−1∑
j=0

min {δj−1 + sj , p− δj−1 − sj} ,

where

δj =

{
0, if sj < p/2;

1, if sj > p/2.

Consider v
(
g(m)g(m+ s)

)
for 0 ≤ m < q − 1.

(1) If |(p − 1)/2 − sj | > 1 for all j, then the valuation is minimal: m = M ,
v = V .

(2) If |(p − 1)/2 − sj | > 2 for all j, then the valuation is secondly minimal:
m ≡ M + pi mod (q − 1) for some i, v = V + 2.

(3) If |(p − 1)/2 − sj | > 3 for all j, then the valuation is thirdly minimal:
m ≡ M + pi + pi

′
mod (q − 1) for some i, i′, v = V + 4.

Proof. Denote by s′j = min {sj , p− 1− sj}. Write

m+ s− (q − 1)ϵk−1 =

k−1∑
j=0

njp
j < q − 1, 0 ≤ nj ≤ p− 1,

where ϵk−1 ∈ {0, 1}. Then
nj = mj + sj + ϵj−1 − pϵj ,
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where ϵj ∈ {0, 1} and ϵ−1 = ϵk−1. Denote by m′
j = min {mj , nj} and ϵ′j = |ϵj −

ϵj+1|. Then

mj + nj =

{
2m′

j + s′j + ϵ′j−1, if δ′j = 0;

2m′
j + (p− 1− s′j) + ϵ′j−1, if δ′j = ±1,

where δ′j = δj − ϵj . Assume that |(p− 1)/2− sj | > λ for all j.
(1) Place δ′0, . . . , δ

′
k−1 in a circle. If all δ′j = 0,

v
(
g(m)g(m+ s)

)
=

k−1∑
j=0

(2m′
j + s′j + ϵ′j−1) ≥

k−1∑
j=0

(s′j + ϵ′j−1) = V.

Otherwise there are α strings of ±1’s, with total length z. If δ′j = δ′j+1 = 0, then
ϵ′j = |δj − δj+1|. Thus

v
(
g(m)g(m+ s)

)
=

k−1∑
j=0

(mj + nj)

≥V +
∑
δ′j ̸=0

(p− 1− 2s′j) +

k−1∑
j=0

(ϵ′j−1 − |δj−1 − δj |)

≥V +
∑
δ′j ̸=0

|p− 1− 2sj | − (z + α)

>V + 2λz − 2z = V + 2(λ− 1).

Therefore, v
(
g(m)g(m+ s)

)
≥ V with equality holds if and only if m = M .

(2) Note that the valuation has same parity with s. When z ≥ 1, we have that
v
(
g(m)g(m + s)

)
> V + 2. Thus the valuation is secondly minimal if and only if

all δ′j = 0 and only one m′
i = 1. The result then follows.

(3) When z ≥ 1, we have that v
(
g(m)g(m+ s)

)
> V + 4. Thus the valuation is

thirdly minimal if and only if all δ′j = 0, m′
i = 2 for some i or m′

i = m′
i′ = 1 for

some i 6= i′, and other entries are zero. The result then follows. �
Definition 3.5. Let p be a prime prime to d. Let n be a positive integer such that
pn ≡ 1 mod d. For any r ∈ Z or Z/dZ, write aj ≡ rp−j mod d with 0 ≤ aj ≤ d− 1.
Define

Vr :=
1

n

n−1∑
j=0

min

{
δj +

aj+1p− aj
d

, p− δj −
aj+1p− aj

d

}
(3.2)

where

δj =

{
0, if aj ≤ d/2;

1, if aj > d/2.

This definition does not depend on the choice of n.

Proposition 3.6. If p > 3d− 2, then the valuation of Kl(q, a, χr) is kVr.

Proof. If r ≡ d/2 mod d, Vr = (p− 1)/2 and the valuation of

Kl(q, a, χr) = Kl(q, a, ω(q−1)/2) =

q−2∑
m=0

ωm(a)g(m)g
(
m+ q−1

2

)
is (p− 1)k/2 by (3.1).
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If r 6≡ d/2 mod d, then aj 6= d/2 and∣∣∣∣p− 1

2
− aj+1p− aj

d

∣∣∣∣ = |(2aj+1 − d)p+ (d− 2aj)|
2d

≥ p− (d− 2)

2d
> 1.

Thus
(q − 1)r

d
=

k−1∑
j=0

aj+1p− aj
d

pj

satisfies the condition in Lemma 3.4(1) and then the valuation of Kl(q, a, χr) is kVr

by Lemma 3.2. �

Definition 3.7. For any s ∈ Z or Z/dZ, define

T s
p,d := {r mod d | (r, d) = 1, Vrs = Vs} ⊆ (Z/dZ)×. (3.3)

Define
Tp,d :=

⋂
(s,d)=1

T s
p,d.

Proposition 3.8. Assume that p > 3d− 2.
(1) Tp,d is a group containing

{
±pλ mod d | λ ∈ Z

}
.

(2) If p ≡ ±1 mod d, then Tp,d = {±1}.
(3) If 4 | d ≥ 16 and p ≡ d/2± 1 mod d, then Tp,d = (Z/dZ)×.
(4) If 3 ≤ d ≤ 31 and (p, d) does not satisfies (3), then Tp,d =

{
±pλ mod d | λ ∈ Z

}
.

Proof. (1) If r1, r2 ∈ Tp,d, then Vr1r
−1
2 s = Vr−1

2 s = Vs. Thus r1r
−1
2 ∈ Tp,d and Tp,d

is a group. Since V±pr = Vr by the definition, the group Tp,d contains −1, p.
(2) That’s because if p ≡ ±1 mod d, we have

Vr =
p∓ 1

d
·min {r, d− r} . (3.4)

(3) If p ≡ d/2± 1 mod d, then

a2i = r, a2i+1 =

{
d/2± r, if r < d/2;

d/2∓ (d− r), if r > d/2.

Thus Vr = (p± 1)k/4 and Tp,d = (Z/dZ)×. When 4 | d ≥ 16, φ(d) > 4. Hence Tp,d

does not equal 〈−1, p〉.
(4) We have already know the case p ≡ ±1 mod d in (2). Clearly the assertion

holds if p and −1 generate (Z/dZ)×. The rest cases are listed in Table 1. �

Remark 3.9. (1) One may expect that T s
p,d is also a group. Unfortunately it’s not

true. For instance, take d = 33, p ≡ ±10 mod 33, then T 1
p,d = {±1,±4,±7,±10}.

(2) One can find more pairs (p, d) such that Tp,d 6= 〈−1, p〉 like (3), where d is
divisible by a high power of 2. It’s conjectured that Tp,d = 〈−1, p〉 when 4 - d and
p > 3d− 2.

(3) It seems that Tp,d = Tp′,d if p′ ≡ p mod d and both p, p′ > 3d − 2. But I
don’t have a proof or a counterexample.
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Table 1. Vr for d ≤ 32, (r, d) = 1.

d ±p rH/ {±1} Vr

{1, 3, 4} (8p± 2)/39
3

{2, 5, 6} (p∓ 1)/3
{1, 3, 4} (8p∓ 6)/39

13
4

{2, 5, 6} (p± 1)/3
{1, 5} (3p∓ 2)/13

5 {2, 3} (5p± 1)/26
{4, 6} (5p± 1)/13

{1, 4} (p∓ 1)/6
15 4

{2, 7} (3p± 3)/10

{1, 7}
16 7

{3, 5}
(p ∓ 1)/4

{1, 2, 4, 8} (15p∓ 13)/68
2

{3, 5, 6, 7} (21p± 9)/68
{1, 4} (5p∓ 3)/34

17
{2, 8} (5p∓ 3)/17

4
{3, 5} (4p± 1)17
{6, 7} (13p∓ 1)/34

{1, 7, 8} (16p± 2)/57
7 {2, 3, 5} (10p± 6)/57

{4, 6, 9} (p∓ 1)/3
19

{1, 7, 8} (16p∓ 14)/57
8 {2, 3, 5} (10p∓ 4)/57

{4, 6, 9} (p± 1)/3

{1, 9}
20 9

{3, 7}
(p ∓ 1)/4

{1, 4, 5} (10p± 2)/63
4

{2, 8, 10} (20p± 4)/63
{1, 4, 5} (10p∓ 8)/63

21
5

{2, 8, 10} (20p∓ 16)/63

{1, 8} (3p∓ 3)/14
8 {2, 5} (p± 1)/6

{4, 10} (p± 1)/3

{1, 5} (p∓ 1)/8
5

{7, 11} (3p∓ 3)/8

{1, 7} (p∓ 1)/6
24 7

{5, 11} (p∓ 1)/3
{1, 11}

11
{5, 7}

(p ∓ 1)/4

{1, 4, 6, 9, 11} (31p± 1)/125
4

{2, 3, 7, 8, 12} (32p∓ 28)/125

{1, 4, 6, 9, 11} (31p∓ 11)/125
6

{2, 3, 7, 8, 12} (32p± 8)/125
{1, 7} (4p∓ 3)/25
{2, 11} (13p± 9)/50

25 7 {3, 4} (7p± 1)/50
{6, 8} (7p± 1)/25

{9, 12} (21p± 3)/50
{1, 4, 6, 9, 11} (31p∓ 29)/125

9
{2, 3, 7, 8, 12} (32p± 12)/125

{1, 4, 6, 9, 11} (31p± 9)/125
11

{2, 3, 7, 8, 12} (32p∓ 2)/125

{1, 3, 9} (p∓ 1)/6
3

{5, 7, 11} (23p± 9)/78

{1, 5} (3p∓ 2)/26
26 5 {3, 11} (7p± 4)/26

{7, 9} (8p∓ 1)/26

{1, 3, 9} (p∓ 1)/6
9

{5, 7, 11} (23p± 1)/78

d ±p rH/ {±1} Vr/k

{1, 8, 10} (19p∓ 17)/81

8 {2, 7, 11} (20p± 2)/81
{4, 5, 13} (22p∓ 14)/81

27
{1, 8, 10} (19p∓ 1)/81

10 {2, 7, 11} (20p± 16)/81

{4, 5, 13} (22p∓ 4)/81

{1, 3, 9} (13p∓ 11)/84
3

{5, 11, 13} (29p∓ 3)/84
{1, 3, 9} (13p∓ 5)/84

28
9

{5, 11, 13} (29p± 19)/84
{1, 13}

13 {3, 11} (p ∓ 1)/4

{5, 9}
{1, 4, 5, 6, 7, 9, 13} (45p± 23)/203

4
{2, 3, 8, 10, 11, 12, 14} (60p∓ 8)/203

{1, 4, 5, 6, 7, 9, 13} (45p± 7)/203
5

{2, 3, 8, 10, 11, 12, 14} (60p∓ 10)/203
{1, 4, 5, 6, 7, 9, 13} (45p∓ 9)/203

6
{2, 3, 8, 10, 11, 12, 14} (60p∓ 12)/203
{1, 4, 5, 6, 7, 9, 13} (45p∓ 25)/203

7
{2, 3, 8, 10, 11, 12, 14} (60p∓ 14)/203

{1, 4, 5, 6, 7, 9, 13} (45p± 1)/203
29

9
{2, 3, 8, 10, 11, 12, 14} (60p∓ 18)/203
{1, 12} (13p∓ 11)/58

{2, 5} (7p± 3)/58
{3, 7} (5p∓ 2)/29

12 {4, 10} (7p± 3)/29

{6, 14} (10p∓ 4)/29
{8, 9} (17p∓ 1)/58
{11, 13} (12p± 1)/29

{1, 4, 5, 6, 7, 9, 13} (45p∓ 5)/203
13

{2, 3, 8, 10, 11, 12, 14} (60p∓ 26)/203

{1, 11} (p∓ 1)/5
30 11

{7, 13} (p± 1)/3

{1, 2, 4, 8, 15} (30p± 2)/155
2 {3, 6, 12, 7, 14} (42p∓ 22)/155

{5, 10, 9, 11, 13} (48p± 28)/155
{1, 4, 2, 8, 15} (30p± 4)/155

4 {3, 12, 6, 14, 7} (42p± 18)/155
{5, 10, 9, 11, 13} (48p∓ 6)/155

{1, 5, 6} (12p± 2)/93
{2, 10, 12} (24p± 4)/93

5 {3, 15, 13} (p∓ 1)/3

31 {4, 7, 11} (22p± 14)/93

{8, 9, 14} (p∓ 1)/3
{1, 6, 5} (12p∓ 10)/93
{2, 12, 10} (24p∓ 20)/93

6 {3, 15, 13} (p± 1)/3
{4, 7, 11} (22p∓ 8)/93
{8, 9, 14} (p± 1)/3
{1, 8, 2, 4, 15} (30p± 8)/155

8 {3, 6, 12, 7, 14} (42p± 36)/155
{5, 9, 10, 13, 11} (48p∓ 12)/155

7 every coset
32 9 every coset p/4

15 every coset (p ∓ 1)/4
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Proposition 3.10. Assume that d ≥ 3 and p > 5d − 2. If p ≡ ±1 mod d and
Tr(a) 6= 0, then Kl(q, a, χ) generates Q(µdp)

H , where

H =



〈τ−1, σ−1〉, if χ(−1) = 1 and χ(a) = 1;

〈σ−1〉, if χ(−1) = 1 and χ(a) = −1;

〈τ−1〉, if χ(−1) = −1 and χ(a) = 1;

〈τ−1σ−1〉, if χ(−1) = −1 and χ(a) = −1;

{1} , if χ(−1) = −1 and χ(a) 6= ±1.

Proof. We may assume that χ = ω−(q−1)/d. Denote by Mr the M in Lemma 3.4
for s = (q − 1)r/d. By Lemma 3.4 and Proposition 3.6, we have

(q − 1)Kl(q, a, χr)

≡ωMr (a)g(Mr)g
(
Mr +

q−1
d

)
+

k−1∑
i=0

ωMr+pi

(a)g(Mr + pi)g
(
Mr +

q−1
d + pi

)
≡ωMr (a)g(Mr)g

(
Mr +

q−1
d

)
+ CπkVr+2ωMr (a)ω(Tr(a)) mod PkVr+3, (3.5)

where C is a constant prime to p.
By Lemma 3.1(1), we have

τwσtKl(q, a, χ) = χ(t)−wKl(q, t2a, χw) = χ(ta)wKl(q, t2a, χ−w). (3.6)
If τwσt fixes Kl(q, a, χ), then Vw = V1. Thus w = ±1 by Proposition 3.8(2). If
w = 1, χ(t)−1Kl(q, t2a, χ) = Kl(q, a, χ) and we have

χ(t)−1ωM1(t2a) ≡ ωM1(a) mod P.

This forces χ(t)−1ωM1(t2) = 1 and then
χ(t)−1ωM1(t2a)ω(Tr(t2a)) ≡ ωM1(a)ω(Tr(a)) mod P.

Since ω(Tr(a)) 6= 0, we have ω(t2) = 1, t = ±1 and χ(t) = 1.
If w = −1, χ(ta)−1Kl(q, t2a, χ) = Kl(q, a, χ) and we have

χ(ta)−1ωM1(t2a) ≡ ωM1(a) mod P.

This forces χ(ta)−1ωM1(t2) = 1 and then
χ(ta)−1ωM1(t2a)ω(Tr(t2a)) ≡ ωM1(a)ω(Tr(a)) mod P.

Since ω(Tr(a)) 6= 0, we have ω(t2) = 1, t = ±1 and χ(ta) = 1. The result then
follows. �

When Tp,d equals 〈−1, p〉, we can determine the generating field of Kl(q, a, χ),
where a ∈ F×

p and p - k.

Theorem 3.11. Assume that 3 ≤ d | (q − 1), p > 5d − 2, a ∈ F×
p and p - k. If

Tp,d = 〈−1, p〉, then Kl(q, a, χ) generates Q(µdp)
H , where

H =



〈τp, τ−1, σ−1〉, if χ(−1) = 1 and χ(a) = 1;

〈τp, σ−1〉, if χ(−1) = 1 and χ(a) = −1;

〈τp, τ−1〉, if χ(−1) = −1 and χ(a) = 1;

〈τp, τ−1σ−1〉, if χ(−1) = −1 and χ(a) = −1;

〈τp〉, if χ(−1) = −1 and χ(a) 6= ±1.

In particular, this holds for d ≤ 31 with p 6≡ ±(d/2− 1) mod d if 4 | d.



14 SHENXING ZHANG

Proof. If τwσt fixes Kl(q, a, χ), it also fixes τrKl(q, a, χ) = Kl(q, a, χr). Thus Vwr =
Vr by (3.5), (3.6) and Proposition 3.6. Then w ∈ Tp,d and w ≡ ±pλ mod d for some
λ. For w ≡ pλ, by Lemma 3.1(2), we have

Kl(q, a, χw) = Kl(q, a, χpλ

) = Kl(q, ap
λ

, χ) = Kl(q, a, χ).

Similar to the proof of Proposition 3.10, if Tr(a) 6= 0, we have ω(t2) ≡ 1 and then
t = ±1, χ(t) = 1.

For w ≡ −pλ, by Lemma 3.1(2), we have Kl(q, a, χ−w) = Kl(q, a, χ). Similarly,
if Tr(a) 6= 0, we have t = ±1 and χ(ta) = 1.

The last claim follows from Proposition 3.8(4). �

4. The partial Gauss sums

In this section, we will study the partial Gauss sum

g(q, a, χ) :=
∑

xxδ=a

χ(x)ζTr
′(x) ∈ Q(µdp), a ∈ F×

q ,

where δ : x 7→ xq is the non-trivial element in Gal(Fq2/Fq), Tr′(x) = TrFq2/Fq
(x) =

Tr(x+ xδ) and d | (q2 − 1) is the order of χ. The notations ω, v, g are defined as in
Subsection 2.1, but q is replaced by q2.

Lemma 4.1. We have
(1) g(q, a, χ) = χ(a)g(q, a, χ);
(2) g(q, a, χp) = g(q, ap, χ).
(3) When d is even, we have g(q, a, χd/2+1) = χ2(a)g(q, a, χ), where χ2 is the

quadratic character on F×
q .

Proof. We substitute x by xδ = a/x or xp respectively, then (1)(2) follows. If
xxδ = a, then χd/2(x) = ω(q−1)/2(a) = χ2(a) and (3) follows. �

Similar to Section 3, we may assume that χ = ω−(q2−1)/d since we are interested
in the generating field of g(q, a, χ).

Lemma 4.2. We have a Fourier expansion

(q − 1)g(q, a, χr) =

q−2∑
m=0

ωm(a)g
(
(q + 1)m+ q2−1

d r
)
.

Proof. Write a = αq+1 = ααδ for some α ∈ F×
q2 , then we have

q−2∑
m=0

ω(q+1)m(α−1x) =

q−2∑
m=0

ωm(a−1xxδ) =

{
0, if xxδ 6= a;

q − 1, if xxδ = a.

Thus
(q − 1)g(q, a, χr) =(q − 1)

∑
xxδ=a

χr(x)ζTr
′(x)

=

q−2∑
m=0

∑
x∈F×

q2

χr(x)ω(q+1)m(α−1x)ζTr
′(x)

=

q−2∑
m=0

ωm(a)g
(
(q + 1)m+ q2−1

d r
)
. �
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We will consider the cases d | (q ± 1) respectively.

4.1. The case d | (q − 1).

Proposition 4.3. Assume that d | (q − 1) and p > 2. If Tr(a) 6= 0, then g(q, a, χ)
generates Q(µdp)

H , where
H = {τwσ±1 | w ≡ 1 mod d1}

and d1 | d is the order of a(q−1)/d.

Proof. We have
g(q, a, χr) = ω−(q−1)r/d(a)g(q, a,1) (4.1)

and
(q − 1)g(q, a,1) ≡ 1 + ω(Tr(a))g(q + 1) mod P3 (4.2)

by Lemma 4.2. Since

τwσtg(q, a, χ) =
∑

xxδ=at2

χw(xt−1)ζTr
′(x) = χ−w(t)g(q, at2, χw), (4.3)

if τwσt fixes g(q, a, χ), we have χ−w(t)ω−(q−1)(w−1)/d(a) = 1. Thus we have
ω(Tr(t2a)) ≡ ω(Tr(a)) mod P.

If Tr(a) 6= 0, then t = ±1 and χ(t) = ω−(q−1)/d(tq+1) = 1. Then w ≡ 1 mod d1
and g(q, a, χ) generates Q(µdp)

H . �
4.2. The case d | (q + 1). We need the following lemma to obtain the P-adic
expansion of g(q, a, χ).

Lemma 4.4. Let s be a positive integer less than (q− 1)/2. Let sj , δj ,M, V be the
notations as in Lemma 3.4. Assume that |(p− 1)/2− sj | > 3 for all j; s0 ≥ 2 and
not all δj are same.

(1) The valuation v
(
g((q + 1)m+ s)

)
is

• minimal: m = M , v = V ;
• secondly minimal: m = M + pj, v = V + 2.

(2) The valuation v
(
g((q + 1)m− s)

)
is

• minimal: m = M + s, v = V ;
• secondly minimal: m = M + s+ pj, v = V + 2.

Proof. By the assumptions, p ≥ 11 and sk−1 ≤ (p− 9)/2. Then s < (p− 7)pk−1/2
and

M =
∑
δj=1

(p− δj−1 − sj)p
j ≤

k−2∑
j=0

p1+j <
11

10
pk−1.

Thus
M + 2δ0 − 1 + pi + pi

′
+ s <

(
11

10
+ 2 +

p− 7

2

)
pk−1 + 2 < q, (4.4)

Denote by gq the Gauss sum with respect to Fq.
(1) If m+ s ≥ q, then

v
(
g((q + 1)m+ s)

)
= v
(
gq(m+ s− q)gq(m+ 1)

)
= v
(
gq(m+ s− 1)gq(m+ 1)

)
.

Since s− 2 has same δi sequence as s, by Lemma 3.4, the valuation is
• minimal: m = M + 2δ0 − 1, v = V + 4δ0 − 2;
• secondly minimal: m = M + 2δ0 − 1 + pi, v = V + 4δ0;
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• thirdly minimal: m = M + 2δ0 − 1 + pi + pi
′ , v = V + 4δ0 + 2.

But by (4.4), these three cases do not happen and the valuation is at least V + 4.
If m+ s < q, then v

(
g((q+1)m+ s)

)
= v
(
gq(m)gq(m+ s)

)
. By Lemma 3.4, the

valuation is
• minimal: m = M , v = V ;
• secondly minimal: m = M + pi, v = V + 2.

The result then follows.
(2) If m < s, then

v
(
g((q + 1)m− s)

)
= v
(
gq(m− 1)gq(m+ q − s)

)
= v
(
gq(m

′)gq(m
′ + s− 2)

)
,

where m′ = m + q − s. Since s − 2 has same δi sequence as s, by Lemma 3.4, the
valuation is

• minimal: m = M + 2δ0 − 1 + s, v = V + 4δ0 − 2;
• secondly minimal: m = M + 2δ0 − 1 + s+ pi, v = V + 4δ0;
• thirdly minimal: m = M + 2δ0 − 1 + s+ pi + pi

′ , v = V + 4δ0 + 2

by (4.4). But m < s, these three cases do not happen and then the valuation is at
least V + 4.

If m ≥ s, then v
(
g((q + 1)m − s)

)
= v

(
gq(m − s)gq(m)

)
. By Lemma 3.4, the

valuation is
• minimal: m = M + s, v = V ;
• secondly minimal: m = M + s+ pi, v = V + 2.

The result then follows. �

Proposition 4.5. If p > 7d− 2, then the valuation of g(q, a, χr) is kV2r.

Proof. If r ≡ 0, d/2 mod d, then V2r = 0 and the order of χr is at most 2, which
divides q − 1. Thus the valuation of g(q, a, χr) is zero by (4.1) and (4.2).

If r 6≡ 0, d/2 mod d, by Lemma 4.1(1) and the fact that V2r = V−2r, we may
assume that 1 ≤ r < d/2. Write

q2 − 1

d
r = sL + qsM , sL =

(d− r)q − r

d
, sM =

rq − (d− r)

d
.

Then

s = sL − sM = (d− 2r)
q + 1

d
=

k−1∑
j=0

bj+1p− bj
d

pj ,

where bjp
j ≡ 2r mod d with 0 ≤ bj ≤ d− 1. By Lemmas 4.2, 4.4 and

g
(
(q + 1)m+ q2−1

d r
)
=

{
g
(
(q + 1)(m+ sM + 1)− 2r q+1

d

)
, if 1 ≤ r < d

4 ;

g
(
(q + 1)(m+ sM ) + (d− 2r) q+1

d

)
, if d

4 ≤ r < d
2 ,

the valuation of g(q, a, χr) is kV2r = kVd−2r. �

Definition 4.6. Let p > 7d− 2 be a prime prime to d. Define

T ′
p,d :=

⋂
(s,d)=1

T 2s
p,d = {r mod d | (r, d) = 1, V2rs = V2s, ∀(s, d) = 1} ⊂ (Z/dZ)×,

where T s
p,d is defined as (3.3).
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Proposition 4.7. Assume that p > 7d− 2.
(1) If d is odd, then T ′

p,d = Tp,d. If d is even, then T ′
p,d =

{
r|r mod d/2 ∈ Tp,d/2

}
.

Thus T ′
p,d is a group containing 〈d/2 + 1,−1, p〉.

(2) If p ≡ ±1 mod d, then T ′
p,d = {±1,±(d/2 + 1)}.

(3) T ′
p,d = 〈d/2 + 1,−1, p〉 if and only if Tp,d/(2,d) = 〈−1, p〉.

(4) If −1 is a power of p mod d, then T ′
p,d = 〈d/2 + 1, p〉 if d/(2, d) ≤ 31.

Here, d/2 + 1 appears only if 4 | d.

Proof. Note that (d/2− 1, d) = (d/2− 1, 2) = 1 holds only if 4 | d.
(1) follows from the definition directly. (2) follows from (1) and Proposition 3.8(2).

(3) follows from (1). For (4), p 6≡ ±(d/4 + 1) mod d/2 if 4 | d/2 ≥ 16. Then the
result follows from (1) and Proposition 3.8(4). �

Proposition 4.8. Assume that p > 7d− 2. If p ≡ −1 mod d and Tr(a) 6= 0, then
g(q, a, χ) generates Q(µdp)

H , where

H =

{
〈τ−1, σ−1〉, if a /∈ F×2

q or 4 - d;
〈τd/2−1, τ−1, σ−1〉, if a ∈ F×2

q and 4 | d.

Proof. We may assume that χ = ω−(q2−1)/d. The cases d = 1, 2 is shown in
Proposition 4.3 and we may assume that d ≥ 3.

Denote by Nr = q2−1
d r + (q + 1)Mr such that v(Nr) = kV2r is minimal. Then

by Lemma 4.4, the valuation is secondly minimal if and only if m = Mr + pi for
some i, in which case, the valuation is kV2r + 2. By Lemma 4.2, we have

(q − 1)g(q, a, χr)

≡ωMr (a)g(Nr) +

k−1∑
i=0

ωMr+pi

(a)g
(
Nr + (q + 1)pi

)
=ωMr (a)g(Nr) +

k−1∑
i=0

ωMr+pi

(a)g
(
Nr + (q + 1)pi

)
=ωMr (a)g(Nr) + CπkV2r+2ωMr (a)ω(Tr(a)) mod PkV2r+3. (4.5)

Note that χ(x) = 1 for any x ∈ F×
q since d | (q + 1). By Lemma 4.1, we have

g(q, a, χ−r) = g(q, a, χr), g(q, a, χd/2±r) = χ2(a)g(q, a, χ
r).

If τwσt fixes g(q, a, χ), then by (4.3), V2w = V2. Thus w ≡ ±1,±(d/2+1) mod d
by (3.4). If τ±1σt fixes g(q, a, χ), we have

ωM1(t2a) ≡ ωM1(a) mod P.

This forces ωM1(t2) = 1 and then

ωM1(t2a)ω(Tr(t2a)) ≡ ωM1(a)ω(Tr(a)) mod P.

Since Tr(a) 6= 0, we have ω(t2) = 1 and t = ±1.
If 4 | d and w = d/2 ± 1, we have χ2(a) = 1 and σt fixes g(q, a, χ). Since

Tr(a) 6= 0, we have t = ±1. The result then follows. �
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Theorem 4.9. Assume that d | (q + 1), p > 7d− 2, a ∈ F×
p and p - k. If Tp,d/(2,d)

is generated by p, then g(q, a, χ) generates Q(µdp)
H , where

H =

{
〈τp, σ−1〉, if a /∈ F×2

p or 4 - d;
〈τd/2+1, τp, σ−1〉, if a ∈ F×2

p and 4 | d.

In particular, this holds if d/(2, d) ≤ 31.

Proof. If τwσt fixes g(q, a, χ), it also fixes τrg(q, a, χ) = g(q, a, χr). Thus V2wr = V2r

by (4.5), (4.3) and Proposition 4.5. Note that −1 is a power of p modulo d. Then
w ∈ T ′

p,d and w ≡ pλ or (d/2+1)pλ mod d for some λ. For w ≡ pλ, by Lemma 4.1(2),
we have

g(q, a, χw) = g(q, ap
λ

, χ) = g(q, a, χ).

Similar to the proof of Proposition 4.8, if Tr(a) 6= 0, we have ω(t2) = 1 and then
t = ±1.

For 4 | d and w ≡ (d/2 + 1)pλ mod d, by Lemma 4.1(2)(3), we have
g(q, a, χw) = χ2(a)g(q, a, χ).

Thus χ2(a) = 1 by (4.5). Similarly, if Tr(a) 6= 0, we have t = ±1. �
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