THE GENERATING FIELDS OF TWO TWISTED
KLOOSTERMAN SUMS

SHENXING ZHANG

ABSTRACT. In this paper, we study the generating fields of the twisted Kloost-
erman sums Kl(g, a, x) and the partial Gauss sums g(q, a, x). We require that
the characteristic p is large with respect to the order d of the character x and
the trace of the coefficient a is nonzero. When p = +1 mod d, we can charac-
terize the generating fields of these character sums. For general p, when a lies
in the prime field, we propose a combinatorial condition on (p,d) to ensure
one can determine the generating fields.

1. INTRODUCTION

1.1. Background. Let p be a prime, ¢ = p* a power of p. Let f € Fq[xlil, R
be a Laurent polynomial. Let x1,...,xn : Fy — p1g—1 be multiplicative characters.
The twisted exponential sum of f with respect to x1,..., X is defined as
Se(foxas - xn) = > xa(@1) .o xn (@))€ Zlpg),
z;€Fy
where d is the least common multiplier of orders of x1,..., Xn, C is a fixed primitive

p-th root of unity and Tr = Trp_/p,. If all x; are trivial and f is a polynomial, we
denote by

Sq(f) = Z (U ¢ Z[pyp)
x; €Fy
the exponential sum of f. If ( is replaced by another primitive p-th root of unity,
the twisted exponential sum is replaced by a Galois conjugate and its degree does
not change. There are various results about estimation on the exponential sums,
their absolute values and p-adic valuations we will not list here. What we will
discuss is their generating fields for some special f, x;.

The generating fields of exponential sums are relate to the distinctness of expo-
nential sums and the generators of cyclotomic fields. When all y; are trivial, to
give the generating field of S,(f) or S;(f) is equivalent to give its degree as an
algebraic number. We list some known results here.

(1) deg f = 1: S,(f) =0.
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(2) degf = 2,p > 3: Sp(z?) = /(—=1)®=D/2p is the Gauss sum of the
non-trivial quadratic character modulo p. Hasse-Davenport proved that
Sy(2?) = (=1)F=18,(22)*. Hence S, (2% + a) = (—1)F18,(2?)*¢™ (@ and

p—1, if Tr(a) # 0;
deg Sy(2* +a) = 2, if Tr(a) =0 and 21 k;
1, if Tr(a) =0 and 2 | k.

(3) f = ax? p > 3: We may assume that d | (¢ — 1). Then deg S,(f) divides
(p—1)/(p—1,%). Ifd|(p—1)ord|(g—1)/(p— 1), then deg S,(f) =
(p—1)/(p—1, %). See [Wanl9, Example 3.10].

(4) f = az? 4+ 9% with coprime di,do: If p = 1 mod d, p is large with
respect to deg f and Tr(a=9) # 0, then deg S,(f) = m. See
[Zha2(, Theorem 1.1].

(5) For f e Fylx], (p — 1)/ degS,(f) is a factor of

#{(@y) €eF2|y* —y=f(x)} —1,p—1).

See [Wanl9, Theorem 3.16].

(6) The sequence {Sg:(f)}, is periodic for k > N for some constant N, see
[WaY20, Theorem 1]. The author gave a bound on the period in [Zha2(,
Corollary 2.4]. Combining this result and the bound on the degree of the
L-function of f in [Bom78, Theorem 1], the author showed that: under
certain coprime condition, the degree of S,.(az®™! +z) = (p —1)/d for
sufficiently large k if p = 1 mod d and p is large with respect to d. See
[Zha2(, Corollary 1.2(2)].

The exponential sum of

1

- -1
f=azxy- - xp+x] +--+2x,, ae]FqX

is called the Kloosterman sum Kl,(q,a). When Tr(a) # 0, the degree of Kl(g, a) is
(p—1)/(n+1,p—1), see [Wan95i. Theorem 1.1]. When Tr(a) = 0, the degree of f
can be obtained by the work in [Fis92, Corollary 4.24] and [Wan95, Theorem 5.1]
if p is large or p does not divide a certain integer, with respect to n and k. But no
simple formula is known in general, see also [KRV11, Theorem 2].

1.2. Main results. We see that all of these results are about untwisted exponential
sums. In this article, we will consider the generating field of the general Kloosterman
sum

n

Kln(le'">Xn;d1,'~~adn)(qa a) = Z C’I‘r(zlwl)H)ﬁ(xl) € Q(Ndp)

m‘lil edn_q i=1
x1,...,wn €EFg
in two cases, where x1, ..., xn are multiplicative characters on F* and a € F. See

[Kat88, page 48].
When Tr(a) # 0, we study the generating field of the twisted Kloosterman sum

Kl(g,a,x) = Klo(x, 1;1,1)(g,a) = Y x(a)¢™eFe/),

z€FY
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and the generating field of the partial Gauss sum
9(¢,0,X) = Kli(x; g+ 1)(¢%a) = Y x(a)¢™ete/).

rdtl=q

These character sums are motivated from the exponential sums of cubic polynomi-
als. When y is cubic, the exponential sum

Kl 3 if ¢ =1 mod 3;
S'q(m3 — 3az) == Z CTr(I3—3u,m) _ ((Lg s X)s 1 q mod 3;
z€F, 9(q,a’,x), ifg=—1mod3.

See Proposition @
Fix isomorphisms
o : (Z/pZ)" — Gal(Q(p,)/Q)
where 04(¢,) = ¢}, for any (, € py,

T_: (Z/dZ)* — Gal(Q(pa)/Q)

where 7,,(¢q) = (Y for any (4 € pq. Both o, and 7, can be viewed as elements in
Gal(Qpt4y)/Q) since p 1 d.

Theorem 1.1. Let d be the order of x.
(1) When d = 2,
* Kl(q,a,x) =0 if x(a) = —1;
e Kl(q,a,x) generates Q(up)* if x(a) =1, x(=1) = 1 and Tr(y/a) # 0;
e Kl(q,a,x) generates Q(up) if x(a) =1, x(—1) = =1 and Tr(y/a) # 0;
(2) When d >3 and p > 5d — 2, Kl(q,a, x) generates Q(uap)™, where

T_1,0-1), if x(=1)=1 and x(a) = 1;

(

(0-1) if x(=1) =1 and x(a) = —1;
H={(),  ifx(=1)=—1 and x(a) = 1

(t_10-1), if x(=1) = =1 and x(a) = —1;

{1}, if x(=1) = =1 and x(a) # £1,

if p=+1 mod d and Tr(a) # 0.

See Propositions @ and .
Theorem 1.2. Let d be the order of x. Assume that Tr(a) # 0.
(1) If d| (¢ — 1) and p > 2, then g(q,a,x) generates Q(uap)™, where
H={ry0+1 | w=1modd;}
and dy | d is the order of ala—1)/d,
(2) Ifd| (p+1) and p > 7d — 2, then g(q,a,x) generates Q(uap)™, where

T_1,0_1), ifa & FX2 or41d;
H = a
<Td/2+177—7170—71>7 ifaeF;z and4|d
See Propositions @ and @

For general d, if (p,d) satisfies a combinatorial condition, we characterize the
generating fields of these character sums when a € F,. Let n be the order of
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pmod d. For any r € Z or Z/dZ, write a; = rp~ mod d with 0 < a; < d — 1.
Define

n—1

Ve ;me{(gﬁcwu;—%’p_aj_%ﬂ;—%}
7=0
where
5 0, if aj S d/2,
71, ifay > d/2.
Denote by

Tpa={r € (Z/dZ)* | Vss = V,Vs € (Z/dZ)*} .
This is a subgroup of (Z/dZ)* containing —1, p.
Theorem 1.3. Let d be the order of x. Assume that a € )\ and p 1t k.

(1) Ifd >3, p>5d—2 and T, 4 = (—1,p), then Kl(q,a,x) generates Q(pap)™,
where

(Tp, T—1,0-1), if x(—1) =1 and x(a) = 1;
(Tpy0-1), if x(=1) =1 and x(a) = —1;
H={ (1, 7-1), if x(=1) = =1 and x(a) = 1;
(Tp, T—10-1), if x(—1) = —1 and x(a) = —1;
(Tp), if x(=1) = —1 and x(a) # 1.

In particular, this holds for d < 31 with p # £(d/2+ 1) mod d if 4 | d.
(2)Ifd | (¢g+1), p>T7d—2 and T, 4/2,ay = (p), then g(q,a,x) generates
Q(pap)™, where

o= o1, ifa ¢ FX? ordtd,
B <Td/2+1,Tp,0—1>, ifae]F;2 and 4 | d.

In particular, this holds if d/(2,d) < 31.

See Theorems and @

It’s an interesting phenomenon that these two different Kloosterman sums de-
pend on similar conbinatorial conditions. It seems that there should be a direct
relation between these two Kloosterman sums.

We will express the Kloosterman sums as a Fourier expansion and use Stick-
elberger’s congruence theorem to determine the first several terms of the B-adic
expansions for a fixed prime B in Q(f4(q—1)p). The main estimation is in Lemma B.4.
Then the generating fields are obtained by these results.

2. PRELIMINARIES

2.1. The Stickelberger’s congruence theorem. We will use this theorem to
estimate the valuations of Gauss sums. The prime p splits into f = p(q — 1)/k
primes as

pZ[qul] =Pp1---Py
in Q(pq—1) and p,’s are totally ramified as

PiZlpg—1)p) = PBL!
in Q(u(g—1)p). Let p be a fixed prime above p in Q(py—1) and B the unique prime

above p in Q(f4(q—1)p). Let v be the normalized B-adic valuation. Then v(p) = p—1
and v(m) = 1 where 1 = ( — 1.
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Q(/J'(qfl)p):) q:;h v 7mf

7

Pi,..., Py CQ(qul)

pZ CQ
Let x be the residue field of p and w the Teichmiiller lifting of the quotient map

Zlpg—1]* — &> associated to p. We can view w as a character on Fy if we fix an
isomorphism F,; = k. Different choice of the isomorphism may cause a composite
by a power of the Frobenius map. Take w(0) = 0 for convention. Then w is
multiplicative and

w(a) +w(b) —w(a+0b) €p.
In particular, its B-adic valuation is at least p — 1. Denote by

g(m) ==Y w(t) "¢

teFy

the Gauss sum of w™™. Clearly, g(0) = —1 and g(pm) = g(m). Recall the Stickel-
berger’s congruence theorem, see [Sti90], [Was82, Chap. 6].

Theorem 2.1. For0<m < q—1,

Mot

g(m) = _ mod %m0+"'+mk—1+17
m()! s mk_1!

where
m=mo+mip+---+meap”, 0<m;<p-1
In particular, v(g(m)) = m mod (p — 1) has same parity with m.
2.2. Relation to the exponential sums of cubic polynomials. In this sub-
section, we will show the relations between the cubic exponential sums and the

twisted Kloosterman sums or the partial Gauss sums. This fact is well known to
experts. Let’s show it briefly.

Proposition 2.2. Assume that p >3 and a € Fy.

(1) If ¢ = 1 mod 3, then Sy(x® — 3az) = Kl(g,a®, x) where x is any non-trivial
3-th character of F.

(2) If g = —1 mod 3, then Sy(z® — 3az) = g,(q,a>) where x is any non-trivial
3-th character of qug.

From this, Sy(z®—3axz) generates Q(u,)*t = Q(C+¢™1) if Tr(a®) # 0 and p > 19.
Proof. Denote by N, the number of the equation

f(z)=2°—-3axr =ceF,
with multiplicities. The discriminant of f — ¢ is
A= -27¢% = -27(c* — 4a®) € F,.
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Then N, = 1 if and only if VA ¢ F,. Indeed, there are three cases:
e N. =1, f — c decomposes into a linear factor and a degree 2 irreducible
polynomial. Thus the splitting field of f — cis Fj> and VA ¢ F,.
e N, =3, clearly VA € F,.
e N. =0, f —cis irreducible and VA € Fes NFpe = F,.
Fix a nontrivial 3-th root of unity A € F2. Then VA = +3(2X\ + 1)s.

(1) In this case, A € F,. Assume that ¢ = V¢ — 4a® € F,. That’s equivalently
to say, N. = 0 or 3. By Cardano’s formula, the solutions of f(x) = c in F, are

u4au™t, M4 Naut Ao+ daut,

where u® = (c+¢)/2. If N, = 3, then u+au™" € Fy, ulies in F 2 NF s = F, and vice
versa. Hence N, = 3 if and only if v := (¢ +¢)/2 € F*. We have a®/v = (¢ —)/2
and ¢ = v + a®/v.

If N, =3 and ¢ = +2a%/2, we have ¢ = 0 and there is a root with multiplicity 2.

Denote by
B; = Z (T,
N.=i,c#+2a3/2
Then
B, = % 3 (Tr(vtal/v) g % 3 (Trv+a® /v),
vEFF? vA+ad/2 vgFx?
and

BO T Bl + B3 + CTr(2a3/2) + <Tr(—2a3/2) _ Z CTI‘(C) =0.

ceF,
Ifa¢ IE‘qX2, the terms CTr(ﬂasp) disappear. Now
Sa(F) = By + 3Bg + 2T Ce) 4 o(Tr(-20%%)
= 2B3 — By + CTr(ZaB/z) + CTr(—2a3/2)
r(v a3v 1 r(v a3v r a3/2 rfa3/2
= Z CT(+/)_§Z<T(+/)+CT(2 ) 4 ¢Tr(=2a77)
VEFRS3 v#+ad/? vgFx®

X(U) + X(v)  ATr(v+a®/v)
> g ¢
UEF;

_ Ki(g, 0%, x) +Kl(g,a%,X)

5 = Kl(q, a®, x)

by Lemma @(1)

(2) In this case, p= —1mod 3, k = 2+ 1is odd and A € Fz —F,. Thus —27 is
not a square in Fy. Assume that (2X\ +1)s € F,. That’s equivalently to say, N. = 0
or 3. Let 6 :  — 27 be the nontrivial element in Gal(F,2/F,;). The solutions of
f(z) =cinF, are

w—+ u®, Au+ A0, N2+ A,
where u? = (¢ +¢)/2. Ifu € F2, then N, = 3 and vice versa. Hence N. = 3 if
and only if v := (¢ +¢)/2 € IFqXQg. We have v? = (¢ —¢)/2 = a®/v and ¢ = v + v°.
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Similar to (1), we have

Z M . CTr(v-i-ys) _ gX(q7a3) ;QY(Q7G3) — gx(qaa3)

vvd=a3

by Lemma @
Finally, the clalm on the generating field of S,(z® — 3az) follows from Proposi-
b1

tions and @ O

—

Remark 2.3. The condition on p can be weaken to p > 11, see [Zha20, Corollary 1.2].

3. THE TWISTED KLOOSTERMAN SUMS

In this section, we will study the generating field of the twisted Kloosterman
sum

Ki(g,a,x) == Y x(@)¢"+") € Q(ugp), a €F,

IGF;

where d | (¢ — 1) is the order of x.

Lemma 3.1. We have
(1) Kl(g, a, x) = x(a)Kl(q, a,X);
(2) Kl(g,a, x?) = Kl(g, a?, x).

Proof. We substitute = by a/x or P respectively, then the result follows. ([

There is an integer w prime to d such that y = w=(@=D®/d Then
Kl(g, a, x) = 7,Kl(q, a,w™ 47 D/d),

Since we are interested in the generating field of Kl(g, a,x), we may assume that
x = w~ (@ 1/4 from now on.

Lemma 3.2. We have a Fourier expansion

q—2
(9= DKI(g,a,x") = > w™(a)g(m)g (m + 15*r).
m=0
Proof. We have
=2 0, if xy # a;
w ™ (a ay) .
— q—1, ifzy=a.
Thus
(0= DKU(g,a,x") = (g = 1) Y X" ()¢
Ty=a
q—2
_ Z —(a=Dr/d(y Z w (o tay)TrEHY)
z,y€Fy m=0
q—2
= > w"(@)g(m)g (m+ 3tr). =

m=0
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3.1. The quadratic twist.

Proposition 3.3. Assume that d = 2.

(1) Kl(g,a,x) = 0 if x(a) = 1.

(2) If x(a) = 1 and Tr(y/a) # 0, then Kl(q, a, x) generates Q(u,)* if x(—1) = 1;
generates Q(u,) if x(—1) = —1.

Proof. (1) Note that x(a) = —1 and X = x, the result follows from Lemma El(l)
(2) Write a = b%. By Lemma B.9, we have

(¢—3)/2
(q— DKl(ga,x) =2 > w™(a)g(m)g (m+ ).
m=0
Write
k—1 g—1 k—1
m= ijp’, m + S = anp]
7=0 7=0
with 0 <mj,n; <p—1. Then
p—1
n; =m; + T + €j—1 — DEj,

where ¢; € {0,1} and €-; = €41 = 0. Denote by m} = min{m;,n;} and €; =
‘Ej - €j+1" Then
p—1

m; +n; = T+2m;+6;71
and
k—1
o(gtmyg (m+25)) = 3 (m, + )
7=0
(p— Dk (p— 1k
5 —|—j:0(2m3+e§ ) > V= 5

The equality holds if and only all m; = €; = 0, that’s to say, m = 0.
There are two cases such that the valuation is secondly minimal.
i) All m; = €; = 0 except m; = 1 for a unique i with 0 <i <k — 1. That’s
to say, m = p', m+ (¢ — 1)/2 = p'(¢+1)/2 mod (¢ — 1). The summation
of Fourier terms over these m is

23w (a)g(p')g (' + 5) = 2w(Tr(a))g(1)g (45)
i=0

_ 2w(Tr(a))7TV+2' = Cw(Tr(a))rV 2 mod BV +3,

1\ 1k i
() ()
where C' = 4(%71)!_]“.
ii) All mj = ¢; = 0 except €; = ¢, = 1 for a unique pair 4,7’ with 0 <
i < i < k—1. That’s to say, €;41 = --- = ¢4 = 1 and zero otherwise,
m = (p'4+p")/2,m+(q—1)/2 = (p" +p"*)/2 mod (¢—1). The summation
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of Fourier terms over these m is

s i i’ i i’ 1
2 3 () (P52 1

0<i<i’'<k—1

- Z 9P +p (b)mV+2
- GG

0<i<i'<k—1 \ 2

= Cw(Tr(b)? — Tr(b?)) 7" 2 mod P +2.

Now we have
(¢ = DKI(g,a,x) = —29(%5) + Cw(Tr(0))*m "2 mod R +°. (3.1)
If o fixes Kl(q,a, x), we have o:Kl(q,a,x) = x(t)"Kl(q, at?, x) = Kl(q,a, x) and
then x(¢t) =1,
w(Tr(bt))? = w(Tr(b))? mod P.
Note that Tr(b) # 0. If x(—1) = —1, we have ¢ = +1 and Kl(q, a, x) generates
Q(up)t. If x(—1) = 1, we have ¢t = 1 and Kl(q, a, x) generates Q(u,). O

3.2. The d-th twist with d > 3. We need the following lemma to obtain the
PB-adic expansion of Kl(q, a, x).

Lemma 3.4. Let
k—1

SZZSjpj, 0<s;<p-—1,

j=0
be an integer less than q — 1, satisfying s; # (p — 1)/2 for all j. Denote by

M:=> (p=06i-1—s;)p", M+s=> (§;-1+s;)p’ mod (qg—1)

5j:1 5j:0
and
k—1
Vi=v(g(M)g(M +5)) =Y min{6;-1 +s;,p — 651 — 5;},
=0
where

7)1, if s; > p/2.

Consider v(g(m)g(m + s)) for 0 <m < q— 1.

(1) If |(p — 1)/2 — sj| > 1 for all j, then the valuation is minimal: m = M,
v=V.

(2) If |(p — 1)/2 — sj] > 2 for all j, then the valuation is secondly minimal:
m = M + p* mod (¢ — 1) for some i, v ="V +2.

(3) If |(p — 1)/2 — s;| > 3 for all j, then the valuation is thirdly minimal:
m=M +p' + p' mod (g —1) for somei,i', v=V +44.

Proof. Denote by s = min {s;,p—1—s;}. Write

k—1
m+8—(q—1)€k_1=znjpj<q—1, 0<n; <p-—1,
j=0

where €1 € {0,1}. Then

nj = mj -+ Sj + €j—1 7p€j,
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where ¢; € {0,1} and €_1 = €x_1. Denote by m/ = min{m;,n;} and €; = |¢; —
€j+1|- Then

2 if ¢ = 0;
mj+nj={m+5 —|—e] 1 1 3 ;
2mi+ (p—1—s)) +¢€_q, if0f =21
where 67 = J; — €;. Assume that [(p —1)/2 — s;[ > A for all j.
(1) Place dy, ..., d;_, in a circle. If all 0% =0,
k—1

k—1

v(g(m)g(m +s)) = Z(Qm;- + 85+ € ) Z si+e_) =V
Jj=0 j=0

Otherwise there are « strings of £1’s, with total length z. If 5/ = 5' 11 =0, then

6;- = |5j — (Sj+1‘. Thus

e
|
—

v(g(m)g(m+s)) = 4 (m; + ny)

k—1
>V > (p—1-25))+ > (€51 — 0,1 —6))
j=0

8740

I
=)

>V+ ) Ip—1-25— (2 +a)
840
SV +2 z—-22=V+2(A-1).
Therefore, v(g(m)g(m + s)) >V with equality holds if and only if m = M.
(2) Note that the valuation has same parity with s. When z > 1, we have that

v(g(m)g(m + s)) >V + 2. Thus the valuation is secondly minimal if and only if
all 0% = 0 and only one m; = 1. The result then follows.

(3) When z > 1, we have that v(g(m)g(m + s)) >V 4 4. Thus the valuation is
thirdly minimal if and only if all §; = 0, m; = 2 for some i or m} = mj, = 1 for
some ¢ # i/, and other entries are zero. The result then follows. (I

Definition 3.5. Let p be a prime prime to d. Let n be a positive integer such that
p" =1 mod d. For any r € Z or Z/dZ, write a; = rp~/ mod d with 0 < a; <d—1.
Define

n—1
V= - Z min {5]- + 7a;+11; % P — 05 — LJHZ o } (32)
j=0

where
5 {0, if a; < d/2;
1, if a; > d/2
This definition does not depend on the choice of n.

Proposition 3.6. If p > 3d — 2, then the valuation of Kl(q,a,x") is kV,.
Proof. f r =d/2mod d, V,. = (p — 1)/2 and the valuation of

Ki(g,a,x") = Kl(g, 0,0 17V/2) = 3 " w™(a)g(m)g (m + 13)

is (p— 1)k/2 by (B.1).
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If r # d/2 mod d, then a; # d/2 and

p—l -~ aj+1P — a; _ |(2aj+1 —d)p—|—(d—2aj)| > p—(d—2) > 1
2 d 2d - 2d ’
Thus
(g—1)r —a p—a
— AP —a;
-y aoe,
d ; d
7=0
satisfies the condition in Lemma @(1) and then the valuation of Kl(gq, a, x") is kV,
by Lemma @ g

Definition 3.7. For any s € Z or Z/dZ, define
mai={rmodd| (r,d)=1,V,s =V,} C(Z/dZ)". (3.3)
Define

Tpa = ﬂ Ts .

(s,d)=1

Proposition 3.8. Assume that p > 3d — 2.
(1) Tp.a is a group containing {£p* mod d | X € Z}.
(2) If p= +1 mod d, then T, 4 = {£1}.
(3) If4|d>16 and p=d/2+1mod d, then T, g = (Z/dZ)*.
(4) If 3 < d < 31 and (p, d) does not satisfies (3), thenT, 4 = {:tp mod d | X € Z}.

Proof. (1) If ry,73 € Ty q, then Vi, V 1, = Vi. Thus r1r2 €Tpqand Ty q
is a group. Since Vip, = V.. by the deﬁmtlon the group 1}, 4 contains —1,p.
(2) That’s because if p = +1 mod d, we have

Vi = 1%1 min {r,d —r}. (3.4)

(3) If p=d/2 £+ 1 mod d, then

do =t et d/2 £, if r < d/2;
e TV a2 Ed-r), ifr>d/2

Thus V., = (p£1)k/4 and T, 4 = (Z/dZ)*. When 4 | d > 16, p(d) > 4. Hence T} 4
does not equal (—1,p).

(4) We have already know the case p = £1 mod d in (2). Clearly the assertion
holds if p and —1 generate (Z/dZ)*. The rest cases are listed in Table m O

Remark 3.9. (1) One may expect that T, ».a is also a group. Unfortunately it’s not
true. For instance, take d = 33, p = £10 mod 33, then T ; = {£1, +4, +7, £10}.
(2) One can find more pairs (p,d) such that T, 4 # (—1, p) like (3), where d is
divisible by a high power of 2. It’s conjectured that T}, 4 = (—1,p) when 4 { d and
p>3d— 2.
(3) It seems that Tp, 4 = T} 4 if p" = p mod d and both p,p’ > 3d — 2. But I
don’t have a proof or a counterexample.
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TABLE 1. V, for d <32, (r,d) =1
d | +p | rH/{£1} Ve d | +p rH/{x1} Vv, /k
3 | {1,3,4} (8p£2)/39 {1,8,10} (19p F 17)/81
{2,5,6} (pF1)/3 8 [{2,7,11} (20p £ 2)/81
4 | 1134} (8P3F6)/39 o7 {4,5,13} (22p F 14)/81
13 {2,5,6} (p£1)/3 {1,8,10} (19p ¥ 1)/81
{1,5} (3pF2)/13 10 [{2,7,11} (20p + 16)/81
5 | {2,3} (5p£1)/26 {4,5,13} (22p T 4)/81
{4,6} (5p£1)/13 5 [ {139} (13p T 11)/84
15| 4 L4} (r¥1)/6 {5,11, 13} (29p F 3)/84
{2,7} (3pi3)/10 o [ 11,3.9) (13p ¥ 5)/84
{1,7} 28 {5,11, 13} (29p + 19)/84
16| 7 357 (pF1)/4 113)
5 | {1.2,4,8} (15p F 13)/68 13 [ {3,11} (pF1)/4
{3,5,6,7} (21p £ 9)/68 {5,9}
17 {1,4} (5p T 3)/34 4 | {1,4,5,6,7,9,13} (45p + 23)/203
4 128 (5p T 3)/17 {2,3,8,10, 11,12, 14} | (60p T 8)/203
{3,5} (4p £ 1)17 5 | {1.45,6,7,9,13} (45p £7)/203
{6, 7} (13p¥1)/34 {2,3,8,10, 11, 12,14} | (60p F 10)/203
{1,7,8} (16p £ 2)/57 6 | 11.4,5,6,7,9,13} (45p F 9)/203
7 [1{2,3,5} (10p £ 6)/57 {2,3,8,10, 11,12, 14} | (60p ¥ 12)/203
19 14,6,9} pF1)/3 - | {1.4,5,6,7,9,13} (45p F 25)/203
{1,7,8} (16p T 14)/57 {2,3,8,10, 11,12, 14} | (60p F 14)/203
8 [{2,3,5} (10p F 4)/57 o | 11.4,5,6,7,9,13} (45p & 1)/203
{4,6,9} (px1)/3 29 {2,3,8,10, 11,12, 14} | (60p ¥ 18)/203
{1,9} {1, 12} (13p F 11)/58
009 B (pF1)/4 2,57 (7p £ 3)/58
4 4145} (10p £ 2)/63 3,7} (5p F 2)/29
12,8, 10} (20p £ 4)/63 12 [ {4,10} (7p £ 3)/29
5 | AL45) (10p T 8)/63 16, 14} (10p F 4)/29
21 {2,8,10} (20p F 16)/63 18,9} (17p F 1)/58
{1,8} (3p F 3)/14 {11, 13} (12p £ 1)/29
8 [{2,5} (px1)/6 13 | 1L,4,5,6,7,9,13} (45p T 5)/203
{4,107 (px1)/3 12,3,8,10, 11,12, 14} | (60p F 26)/203
5 [{L5} (rF1)/8 30 | 11 LiL11} pF1)/5
{7,117 (3pF3)/8 {7,13} (PED/3
o1 | 7 ALTY (pF1)/6 {1,2,4,8,15} (30p £ 2)/155
15,11} pF1)/3 2 [{3,6,12,7, 14} (42p T 22)/155
{1,11} 15,10,9,11, 13} (48p + 28)/155
N (pF1)/4 {1,4,2,8,15) (30p £ 4)/155
4 [{1,4,6,9,11} | Blp+1)/125 4 [13,12,6,14,7} (42p £ 18)/155
{2,3,7,8,12} | (32p F 28)/125 {5,10,9,11,13} (48p T 6)/155
6 | A1L4,6,9,11} | (31pF 11)/125 {1,5,6} (12p £ 2)/93
{2,3,7,8,12} | (32p £8)/125 {2,10,12} (24p £ 4)/93
{1,7} (4p F3)/25 5 | {3,15,13} PF1)/3
2,11} (13p £ 9)/50 31 {4,7,11} (22p & 14)/93
25 | 7 [{3,4} (7p £ 1)/50 {8,9,14} pF1/3
{6,8} (7p£1)/25 {1,6,5} (12p T 10)/93
9,12} (21p % 3)/50 {2,12, 10} (24p F 20)/93
o | 11,4,6,9, 11} | (31p F 29)/125 6 [{3,15,13} (p+1)/3
{2,3,7,8,12} | (32p £ 12)/125 {4,711} (22p ¥ 8)/93
11 [ AL4,6,9,11} [ (3Ip£9)/125 {8,9,14} (p+1)/3
{2,3,7,8,12} | (32p F 2)/125 {1,8,2,4,15} (30p £ 8)/155
5 [ 1L3.9) (pT1)/6 8 [{3,6,12,7,14} (42p £ 36)/155
15,7, 11} (23p:|:9)/78 {5,9,10,13,11} (48p F 12)/155
{1,5} (3pF2)/26 7 | every coset p/4
26 | 5 | {3,11} (Tp+4)/26 32 | 9 | every coset
{7,9} (8pF1)/26 15 | every coset (pF1)/4
g [{L,3,9} (pF1)/6
{5,7,11} (23p:|: 1)/78
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Proposition 3.10. Assume that d > 3 and p > 5d — 2. If p = £1 mod d and
Tr(a) # 0, then Kl(q,a,x) generates Q(uap)™, where

(tm1,0-1), if x(=1) =1 and x(a) = 1;
(0-1), if x(=1) =1 and x(a) = —1;
H=q(r-1), if x(=1) = =1 and x(a) = 1;
(tT—10-1), if x(=1) = =1 and x(a) = —1;
{1}, if x(=1) = —1 and x(a) # 1.

Proof. We may assume that y = w~ @~/ Denote by M, the M in Lemma @
for s = (¢ — 1)r/d. By Lemma and Proposition B.6, we have
(¢ — DKl(g, a, x")
k—1 A
=™ (a)g(M,)g (M, + S2) + > W™ (a)g(M, + p')g (M, + S + p')
i=0
=wM (a)g(M,)g (M, + 1) + Cx™V P 20Mr (a)w(Tr(a)) mod P2, (3.5)
where C is a constant prime to p.
By Lemma B.1j(1), we have

TwoKl(q, a,x) = x(t)"“Kl(q, ta, ") = x(ta)"Kl(g,t*a, x ). (3.6)
If 7,0 fixes Kl(q,a,x), then V,, = V4. Thus w = +1 by Proposition @(2)
w =1, x(t)"'Kl(q, t?a, x) = Kl(q, a, x) and we have
X() M (2a) = W (a) mod P.
This forces x(t)"'w™M1(t?) = 1 and then
x() ' (Pa)w(Tr(ta)) = W™ (a)w(Tr(a)) mod B.

Since w(Tr(a)) # 0, we have w(t?) =1, t = £1 and x(¢) = 1.
If w= —1, x(ta) " 'Kl(q, t?a, x) = Kl(q, a, x) and we have

x(ta) "t (t2a) = wM (@) mod P.
This forces x(ta) *w?:(t?) = 1 and then
x(ta) 'wM (t2a)w(Tr(t%a)) = w* (a)w(Tr(a)) mod B.

Since w(Tr(a)) # 0, we have w(t?) = 1, t = £1 and x(ta) = 1. The result then
follows. O

When T, 4 equals (—1,p), we can determine the generating field of Kl(q, a, x),
where a € F and p{ k.

Theorem 3.11. Assume that 3 < d | (q—1), p>5d—2,a € F) andp{k. If
Ty = {(—1,p), then Kl(q,a,x) generates Q(uap)™, where

(T, 7-1,0-1), if x(=1) =1 and x(a) =
(Tp,0-1), if x(=1) =1 and x(a) = —
H={ (rp,7_1), if x(=1) =—1 and x(a) =
(Tp,7-10-1),  if x(=1) = =1 and x(a) = —1;
() if x(=1) = =1 and x(a )# +1.
In particular, this holds for d < 31 with p # £(d/2 —1) mod d if 4 | d.
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Proof. If 7,0, fixes Kl(q, a, x), it also fixes 7,.Kl(q, a, x) = Kl(q, a, x"). Thus V,,,. =
V. by (@), (@) and Proposition B.6. Then w € T}, 4 and w = £p* mod d for some
A. For w = p*, by Lemma B.1/(2), we have

Ki(g,a,x") = Kl(g,a, X" ) = Kl(g,a"",x) = Kl(q,a, X).
Similar to the proof of Proposition , if Tr(a) # 0, we have w(t?) = 1 and then
t =41, x(t) = 1.
For w = —p*, by Lemma @(2), we have Kl(q,a,x™") = Kl(q, a, x). Similarly,
if Tr(a) # 0, we have t = £1 and x(ta) = 1.
The last claim follows from Proposition B.§(4). O

4. THE PARTIAL (GAUSS SUMS

In this section, we will study the partial Gauss sum
9(¢,a,x) == > x(@)¢™® € Quap), a€FY,
l‘Z&:a

where & : 2 — 29 is the non-trivial element in Gal(F2/F,), Tr'(z) = Trp 42 /Fo (z) =
Tr(z +2%) and d | (¢ — 1) is the order of x. The notations w, v, g are defined as in
Subsection @ but ¢ is replaced by ¢>.
Lemma 4.1. We have

(1) 9(g,a,x) = x(a)g(q, a,X);

(2) 9(q;a,x") = g(q; a?,x).

(3) When d is even, we have g(q,a,x¥*t1) = x2(a)g(q, a, x), where x» is the
quadratic character on F.

Proof. We substitute x by 2° = a/z or aP respectively, then (1)(2) follows. If
zx® = a, then x¥?(z) = wl4=Y/2(a) = xo(a) and (3) follows. O

Similar to Section E, we may assume that y = w=(@*=1/d gince we are interested
in the generating field of g(q, a, x).

Lemma 4.2. We have a Fourier empansion

(q— gl a,x") Zw g((g+m+ T717).

m=0

Proof. Write a = a9t = aa?® for some o € F;;, then we have

q—2 q—2 . )
0 if xa® # a;
-‘rl)m _ m(,—1, 8y _ , :
mzow ) mz:w (a xx) {ql, a0
Thus
(g=Dglg.a,x") =(g=1) > X (@)™
:ELU‘S:a,
q—2
= Z Xr(x)w(qul)m(aflx)CTr/(z)
m=0 zEJFqu
q—2
=Y w™a)g((g+1)m+ Lr) .
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We will consider the cases d | (¢ £ 1) respectively.
4.1. The case d | (¢ —1).

Proposition 4.3. Assume that d | (¢ — 1) and p > 2. If Tr(a) # 0, then g(q,a, X)
generates Q(uqp)™, where

H ={ry041 | w=1mod d;}
and dy | d is the order of ald=1)/4,
Proof. We have

9@, a,x") = w™ V" a)g(g,a,1) (4.1)
and
(¢ —1)g(g,a,1) = 1+ w(Tr(a))g(q + 1) mod P’ (42)
by Lemma @ Since
Twoig(g,a,x) = Y X"t = x T ()g(q, at?, x), (4.3)
zxd=at?

if 7,0 fixes g(q,a,x), we have x % (t)w= (@~ D(w=1/d(g) = 1, Thus we have
w(Tr(t%a)) = w(Tr(a)) mod B.

If Tr(a) # 0, then t = +1 and x(t) = w=(@=V/4(ta+1) = 1. Then w = 1 mod d;

and ¢(g, a, x) generates Q(uap)? . a

4.2. The case d | (¢ + 1). We need the following lemma to obtain the P-adic
expansion of g(q, a, x).

Lemma 4.4. Let s be a_positive integer less than (¢ —1)/2. Let s;,0;, M,V be the
notations as in Lemma |3.4. Assume that |(p —1)/2 — sj| > 3 for all j; so > 2 and
not all §; are same.
(1) The valuation v(g((q + 1)m + s)) is
o minimal: m=M,v="V;
o sccondly minimal: m = M +p’, v =V +2.
(2) The valuation v(g((q + 1)m — s)) is
e minimal: m=M+s,v=V;
o secondly minimal: m=M +s+p’, v=V + 2.

Proof. By the assumptions, p > 11 and s,_1 < (p — 9)/2. Then s < (p — 7)p*~1/2
and

k—2
. A b
M= (p—08-1—s;)p < ZPHJ < 1P L
0j=1 j=0
Thus
i, 11 P—T\ 1

Denote by g, the Gauss sum with respect to F,.
(1) If m+ s > g, then
v(g((q + m+s)) = v(gg(m + s — q)gq(m + 1)) = v(gg(m + 5 — 1)gg(m +1)).
Since s — 2 has same d; sequence as s, by Lemma @, the valuation is
e minimal: m =M + 209 — 1, v =V + 4§y — 2;
e secondly minimal: m = M + 2§y — 1 + p*, v =V + 4do;
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e thirdly minimal: m = M + 28y — 1 +p' +p', v =V + 450 + 2.
But by (@), these three cases do not happen and the valuation is at least V_+ 4.
If m+ s < ¢, then v(g((g+ 1)m+s)) = v(gq(m)gq(m + s)). By Lemma @, the
valuation is
e minimal: m =M, v =V,
e secondly minimal: m = M +p', v =V + 2.
The result then follows.
(2) If m < s, then

v(g((g+1)m = s)) = v(gg(m — D)gg(m +q — 5)) = v(gg(m')gy(m’ + 5 — 2)),

where m’ = m + g — s. Since s — 2 has same §; sequence as s, by Lemma @, the
valuation is

e minimal: m =M + 200 —1+s,v=V +45y — 2;

e secondly minimal: m = M + 25 — 14+ s +p?, v =V + 460;

e thirdly minimal: m =M +28g —1+s+p' +p*, v =V + 45 + 2

by (Q) But m < s, these three cases do not happen and then the valuation is at
least V' + 4.
If m > s, then v(g((g + 1)m — s)) = v(gq(m — 5)gq(m)). By Lemma @, the
valuation is
e minimal: m=M +s, v ="V
o secondly minimal: m =M +s+p', v =V + 2.
The result then follows. O

Proposition 4.5. If p > 7d — 2, then the valuation of g(q,a,Xx") is kVa,.

Proof. If r = 0,d/2 mod d, then V5, = 0 and the order of x" is at most 2, which
divides ¢ — 1. Thus the valuation of g(q, a, x") is zero by (@) and (@)

If r £ 0,d/2 mod d, by Lemma ﬁ(l) and the fact that Vo, = V_g,, we may
assume that 1 < r < d/2. Write

21 d—r)g— —d-
a d r =38 +4sm, SL:( 73q Ta SM:,rq (Cl /r)~

Then

k-1
g+1 _ ij+1p_bjpj

s=s— sy = (d—2r) p F )

=0
where b;jp’ = 2r mod d with 0 < b; < d — 1. By Lemmas @, @ and

_ +1)(m+sy+1)—2r2) 0 if1<r <9
9((Q+1)m+q2dlr):{g((q ) ut1) T) misrs<i

g((g+D)(m—+sy)+(d—2r)2E), ifd<r<g,
the valuation of g(q,a, x") is kVa, = kVg_a,. O
Definition 4.6. Let p > 7d — 2 be a prime prime to d. Define

va= [ Toy={rmodd](r,d)=1,Vas = Va,¥(s,d) = 1} C (Z/dZ)*,
(s,d)=1

where T} ; is defined as (@)
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Proposition 4.7. Assume that p > 7d — 2.

(1) Ifdis odd, then T}, ; = Tp q. If d is even, then T} ; = {r|r mod d/2 € Tp,d/2}.
Thus Té,d is a group containing (d/2+ 1,—1,p).

(2) If p=+1mod d, then T, ; = {£1,£(d/2+ 1)}.

(3) T, q=(d/2+1,-1,p) if and only if Ty a/2.a) = (—1,p).

(4) If =1 is a power of pmod d, then T, ; = (d/2 + 1,p) if d/(2,d) < 31.

Here, d/2 + 1 appears only if 4 | d.

Proof. Note that (d/2 —1,d) = (d/2—1,2) =1 holds only if 4 | d.

(1) follows from the definition directly. (2) follows from (1) and Proposition @(2)
(3) follows from (1). For (4), p # +(d/4+ 1) mod d/2 if 4 | d/2 > 16. Then the
result follows from (1) and Proposition B.§(4). O

Proposition 4.8. Assume that p > 7d — 2. If p= —1 mod d and Tr(a) # 0, then
9(g,a,x) generates Q(uap), where

H— (To1,0-1), ifa§é]quz or41td;
~ \(raje—1.7o1,0-1), ifa€Fr2 and 4| d.

Proof. We may assume that xy = w=(@=1/d The cases d = 1,2 is shown in
Proposition and we may assume that d > 3.

Denote by N, = qiT_lr + (¢ + 1) M, such that v(N,) = kVa,. is minimal. Then
by Lemma @7 the valuation is secondly minimal if and only if m = M, + p* for
some ¢, in which case, the valuation is kVa, + 2. By Lemma {.2, we have

(¢ —1g(g,a,x")
k—1 _
=M (a)g(N,) + D WM (@)g (N, + (g + 1)p')

?r'w
[ )

S WM (a)g (N, + (g + 1)p)
=0

=wMr(a)g(N,) + Ca*V2r P2 Mr (0)w(Tr(a)) mod kY2 +3, (4.5)

I
£
=
&
=N
5
+

Note that x(z) = 1 for any = € F¥ since d | (¢ +1). By Lemma @, we have

9(¢,a,x7") = g(q,a,X"),  g(g,a, x¥*E") = x2(a)g(q, a, X").

If 7,0; fixes g(q, a, x), then by (@), Vaw = Va. Thus w = +1,+(d/2+1) mod d
by (g) If 7110, fixes g(g,a, x), we have

wMi(t2a) = WM (a) mod P.
This forces w1 (¢2) = 1 and then
WM (#2a)w(Tr(t%a)) = w™ (a)w(Tr(a)) mod B.

Since Tr(a) # 0, we have w(t?) = 1 and t = +1.
If 4| dand w = d/2 + 1, we have x2(a) = 1 and oy fixes g(q,a,x). Since
Tr(a) # 0, we have t = +1. The result then follows. O
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Theorem 4.9. Assume thatd|(¢+1),p>7d—2,a €F) andptk. If T a/(2,0)
is generated by p, then g(q,a,x) generates Q(uap)™, where

(Tp,0-1), ifa¢]F;2 or 41 d;

(Taj241,Tpy0-1), ifac IE‘?Q and 4 | d.

In particular, this holds if d/(2,d) < 31.

H =

Proof. If 1,0, fixes g(q, a, x), it also fixes 7.9(g, a, x) = g(q, a, x"). Thus Vayr = Vo,
by (@)7 (@) and Proposition §.5. Note that —1 is a power of p modulo d._Then
w € T) ;and w = p* or (d/2+1)p* mod d for some . For w = p*, by Lemma @(2),
we have N
9(q,a,x") = g(g,a”" ,x) = g9(q,a,x).
Similar to the proof of Proposition @, if Tr(a) # 0, we have w(t?) = 1 and then
t==1.
For 4 | d and w = (d/2 + 1)p* mod d, by Lemma @(2)(3), we have

9(q,a,x") = x2(a)g(q, a, x).
Thus x2(a) =1 by (@) Similarly, if Tr(a) # 0, we have t = +1. O
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